A Versatile Framework for FPGA Field Updates: An Application of Partial Self-Reconfiguation
نویسندگان
چکیده
Field programmable gate arrays (FPGAs) provide an attractive solution to developers needing custom logic for short time-to-market products. Products embedding FPGA system-on-chip solutions have the advantage in that they can be updated once deployed. New FPGA firmware may be loaded via manufacturer-supplied memory devices or remotely via a network connection. Recent FPGAs allow for self-reconfiguration, where the user-FPGA fabric can internally modify its own configuration data. Using selfreconfiguration, configuration control protocols can be implemented in user logic. This allows new FPGA programming methods to be designed. We propose a versatile partial self-reconfiguration framework for FPGA field updates that customizes to specific applications, reduces reconfiguration times, and minimizes the need for external hardware. The framework provides flexibility in media sources and design security. A prototype using this framework is demonstrated on a Xilinx Virtex-II FPGA.
منابع مشابه
Self authentication path insertion in FPGA-based design flow for tamper-resistant purpose
FPGA platforms have been widely used in many modern digital applications due to their low prototyping cost, short time-to-market and flexibility. Field-programmability of FPGA bitstream has made it as a flexible and easy-to-use platform. However, access to bitstream degraded the security of FPGA IPs because there is no efficient method to authenticate the originality of bitstream by the FPGA pr...
متن کاملمدل عملکردی تحلیلی FPGA برای پردازش با قابلیت پیکربندی مجدد
Optimizing FPGA architectures is one of the key challenges in digital design flow. Traditionally, FPGA designers make use of CAD tools for evaluating architectures in terms of the area, delay and power. Recently, analytical methods have been proposed to optimize the architectures faster and easier. A complete analytical power, area and delay model have received little attention to date. In addi...
متن کاملGeneration of Three-Phase PWM Inverter using Xilinx FPGA and its Application for Utility Connected PV System (RESEARCH NOTE)
Analysis and practical implementation of the regular symmetric sampled three-phase PWM inverter waveform has been presented in this paper. It is digitally implemented on a Xilinx field programmable gate array FPGA, and the essential considerations involved in the feasibility of using a Xilinx XC4008E software-based to generate PWM has been discussed. All the necessary Xilinx hardware/software t...
متن کاملA Self-reconfiguring Platform
A self-reconfiguring platform is reported that enables an FPGA to dynamically reconfigure itself under the control of an embedded microprocessor. This platform has been implemented on Xilinx Virtex IItm and Virtex II Protm devices. The platform’s hardware architecture has been designed to be lightweight. Two APIs (Application Program Interface) are described which abstract the low level configu...
متن کاملField Programmable Gate Array Implementation of Active Control Laws for Multi-mode Vibration Damping
This paper investigate the possibility and effectiveness of multi-mode vibration control of a plate through real-time FPGA (Field Programmable Gate Array) implementation. This type of embedded system offers true parallel and high throughput computation abilities. The control object is an aluminum panel, clamped to a Perspex box’s upper side. Two types of control laws are studied. The first belo...
متن کامل